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Abstract— System identification is a fundamental task in
understanding and modeling dynamical systems, with extensive
applications in engineering. Traditional statistical estimators for
system identification rely on loss functions based on single-
step predictions of model state variables. However, these ap-
proaches often lack robustness and reliability in real-world
scenarios characterized by noisy and imperfect data. Recent
advancements have introduced multi-step loss functions for
autoregressive neural network predictions, leading to signifi-
cant improvements in system identification performance. These
loss functions are optimized via gradient descent, leveraging
backpropagation through the numerically integrated neural
network architecture. Despite their potential, the statistical and
mathematical properties of these gradient estimators, such as
bias, variance and robustness, remain underexplored. This pa-
per examines the statistical and mathematical characteristics of
multi-step loss function estimators in the context of dynamical
system identification. We provide a theoretical foundation for
the bias-variance decomposition of these loss functions, enabling
the separation of error contributions from disturbances and
deterministic model parameterization. Theoretical insights are
validated and extended through empirical analysis, allowing an
exploration of the bias-variance decomposition dynamics across
the training phase. Our results demonstrate both theoretically
and practically the influence of the contractive properties of the
underlying dynamical system and the autoregressive prediction
horizon on training stability. By bridging the theoretical and
practical gap in the exploration of multi-step loss functions,
this work contributes to the understanding and development
of more robust and reliable methods for dynamical system
identification involving gradient descent.

Index Terms— Dynamical System Identification, Multi-step
Loss Functions, Bias-Variance Decomposition, Prediction Hori-
zon, Gradient Stability

I. INTRODUCTION

System identification corresponds to the process of de-
riving mathematical models from observed data, playing a
pivotal role in understanding and predicting the behavior of
dynamical systems. Its applications span a wide range of
fields, including control systems, predictive modeling, state
observation, and anomaly detection, all of which rely heavily
on the accuracy and reliability of these models [1].

In practical scenarios, system identification is often chal-
lenged by the presence of noise, outliers, and disturbances

in the data. These imperfections significantly impact the
performance of traditional statistical estimators, often leading
to reduced accuracy and reliability under such conditions.

The effectiveness of system identification methods de-
pends critically on several factors: the choice of the model
class, the information provided by prior knowledge or avail-
able data, the statistical estimation process, and the valida-
tion methods used to ensure the generalization capability
of the identified model [2]. System identification using
neural network model classes has recently gained renewed
attention, driven by the conceptual linkage between deep
residual networks and continuous dynamical systems [3].
These methods utilize automatic differentiation frameworks
to optimize the numerical integration of neural network
predictions across entire autoregressive trajectories, employ-
ing multi-step loss function. They have been explored in
both discrete settings, leveraging the connection between
residual architectures and discrete integration methods [4],
and in continuous frameworks [5], where neural networks
are represented as continuous layer depth and trained using
adjoint sensitivity methods. These approaches enable more
stable training processes and enhances the generalization
capability of the identified models with respect to one-step
ahead model fitting over various type of dynamical systems
[6], [7], [8], [9].

The mathematical characterization of statistical estimators
[10] in system identification context such as unbiasedness,
efficiency, consistency, and robustness are of interests as
it allows a better understanding of the estimation process,
opening door for improvement or use appropriated statistical
method for specific cases. However, while these properties
have been extensively studied for traditional single-step loss
functions [1], their behavior in the context of multi-step
loss functions remains less explored in system identification
context using neural network, particularly in case of gradient
descent optimization method.

In this direction, this paper explores the statistical char-
acterization of multi-step loss function estimator through
bias-variance decomposition in the context neural network
model optimization using gradient descent methods. The



bias-variance decomposition for multi-step loss functions
enables the separation of deterministic errors, caused by
modeling inaccuracies, from variance errors arising from dis-
turbances in data acquisition allowing to asses deterministic
from stochastic gradient contribution, and gaining insight in
convergence dynamic. The paper provides both theoretical
and empirical justifications for the superior generalization
performance of multi-step loss functions over single-step loss
functions, particularly in long-horizon simulations of neural
network architectures trained on noisy observations. Addi-
tionally, results highlight the statistical property dependence
of this loss on contractive and non-contractive properties
of the underlying dynamical system. These findings open
opportunities to enhance training stability by leveraging
knowledge of system-specific properties, offering pathways
to more robust and reliable system identification methods.

II. RELATED WORK

The behavior of multi-step loss functions is of increasing
interests in many engineering fields for their capability to
identify systems with long horizon simulation capabilities.
In robotic context [11] introduces a multi-step loss function
for training predictive models in model-based reinforce-
ment learning context. This approach addresses the issue of
compounding errors when simulating trajectories over long
horizons, particularly in noisy environments. By proposing
a weighted multi-step Mean Squared Error (MSE) objective,
they demonstrate its advantages in both linear and nonlinear
dynamical systems. Closely related, [12] presents a robust
predictive control method leveraging multi-step prediction
models identified from data using a set-membership ap-
proach. By modeling systems with multi-step predictors
that account for bounded uncertainties, the proposed algo-
rithm ensures input/output constraint satisfaction, recursive
feasibility, and robust convergence. The authors validate
their approach with simulations, demonstrating improved
precision and effectiveness compared to traditional methods
relying on single-step models. In the context of anomaly de-
tection, [13] develops a neural network-based framework for
dynamical systems, leveraging robustness bounds on neural
network estimators under input perturbations. By propagat-
ing auto-regressively ellipsoidal confidence bounds through
a neural network, the authors define a robust prediction
bound that distinguishes normal behavior from anomalies.
The framework is applied to both linear and nonlinear
systems, showcasing its effectiveness in fault detection and
quantifying the impact of training on noisy versus noiseless
data. In the context of Single Source of Error state space
approach, [14] showed that the main benefits of multi-step
estimator is it acts as a shrinkage effect on the model
parameters induced by increasing the number of model steps
during the estimation process. Implying reduced variance
and increase robustness properties in the context of time
series modeling. Closely related, [15] introduces a robust
nonlinear system identification framework using feedforward
multilayer neural networks and radial basis function net-

works. Novel identification algorithms ensure the persistency
of excitation condition, enabling accurate modeling of system
dynamics under noise and disturbances. Evaluated with L1,
L2, and H∞ cost criteria, the proposed methods demonstrate
robust performance and effectiveness in identifying nonlinear
systems, even in challenging conditions.

In a similar direction, this paper proposes a mathematical
framework to characterize the behavior of gradient descent
estimators derived from multi-step loss functions in the con-
text of nonlinear system identification using neural network
model classes. The framework relies on the bias-variance
decomposition of the multi-step loss, isolating noise from
the modeling bias contribution to the final gradient esti-
mate. Complementary experiments on nonlinear dynamical
systems illustrate the theoretical results, providing further
insight into the estimator’s behavior depending on the con-
tractive properties of the observed dynamical system.

III. PROPOSED METHOD

A. Dynamical System Description

We consider the following discrete-time dynamical system
f :

xt+1 = f(xt, ut, θ), (1)

where:
• xt ∈ Rm represents the state of the system,
• ut ∈ Rnis the control inputs,
• θ represents the set of parameters characterizing the

dynamics f .

B. Dataset and Observations

We define a dataset D comprising N trajectory pairs,
where each trajectory spans T time steps. The dataset is
defined as:

D =
{{

(xi
0, u

i
0), (x

i
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i
1), . . . , (x

i
T , u

i
T )

}N

i=1

}
.

Each trajectory is generated recursively by the dynamics f
starting from the initial state x̄0, parameterized by the true
parameters θ∗, as:

x̄t+1 = f(x̄t, ut, θ
∗), (2)

A Gaussian noise ϵ is added at each step t, resulting in
the observed state:

xt = x̄t + ϵ, (3)

where ϵ ∼ N (0,Σ) represents measurement noise with a
mean zero and covariance Σ.

C. Prediction Model

For a given parameterization θ, we define the predicted
trajectory starting from x

(i)
0 as:(

x̂
(i)
1 , x̂

(i)
2 , . . . , x̂

(i)
T

)
,

where the states are recursively generated using the control
inputs {u(i)

t }Tt=0 from the dataset:

x̂
(i)
t+1 = f(x̂

(i)
t , u

(i)
t , θ). (4)



We define the distribution Q(x̂1, . . . , x̂T | x̄0) describes
the uncertainty in the trajectory induced by the Gaussian
uncertainty in the initial state x0 and its deterministic prop-
agation through the dynamics f . Formally:

Q(x̂1, . . . , x̂T | x̄0) = R(x0 | x̄0)

×
T∏

t=1

δ
(
x̂t − f(x̂t−1, ut, θ)

)
.

(5)

• The Dirac delta function δ(·) enforces the deterministic
relationship x̂t = f(x̂t−1, ut, θ). If this condition is not
met, the probability becomes zero.

• The term R(x0 | x̄0) represents the Gaussian uncer-
tainty related to ϵ perturbations in the initial state:
x0 ∼ N (x̄0,Σ).

• The uncertainty in x0 propagates deterministically
through f , defining the distribution Q(x̂1, . . . , x̂T | x̄0).

D. Autoregressive Loss

To fit the model, we define the multi-step loss L(θ) as
the average Mean Squared Error (MSE) over N trajectory
predictions of T time-step:

L(θ) =
1

N

N∑
i=1

1

T

T∑
t=1

∥x(i)
t − x̂

(i)
t ∥2, (6)

where x
(i)
t and x̂

(i)
t denote the true and predicted states

at time t for trajectory i. For a datasets D containing a
sufficiently large number of trajectory, where multiple similar
trajectories are available under comparable initial conditions
perturbed by ϵ, the loss can be reformulated as an expectation
over two key distributions:

• P (x0, ut): The distribution of initial states and control
inputs under the true dynamics parameterized by θ∗.
This distribution arises naturally from the observed
data. It captures the statistical variability in the initial
conditions and control inputs sampled during system
observations.

• Q(x̂t | x0): The distribution of predicted trajecto-
ries generated by the model parameterized by θ. its
sensitivity to initial conditions x0. It encapsulates the
uncertainty inherent in the model predictions for close
trajectory corresponding to perturbed initial state.

The separation into these two distributions allows to dis-
tinguish between variability introduced by the observed data
(through P (x0, ut)) and the model’s ability to replicate the
observed trajectories (through Q(x̂t | x0)). This distinction
is crucial in understanding how the model handles noise,
variability, and long-term prediction accuracy.

Formally:

L(θ) = Ex0∼P

[
Ex̂t∼Q

[
1

T

T∑
t=1

∥xt − x̂t∥2
]]

. (7)

E. Uncertainty Propagation and Mean Trajectory

The mean trajectory of the system, µt, is the expected
value of the system’s dynamics under noise ϵ:

µt+1 = Eϵ∼N (0,Σ) [f(xt + ϵ, ut, θ)] . (8)

For small perturbations ϵ, the dynamics f(xt, ut, θ) can
be approximated near the mean trajectory using a first-order
Taylor expansion:

f(xt, ut, θ) ≈ f(µt, ut, θ) + Jf (µt)(xt − µt), (9)

where Jf (µt) is the Jacobian matrix of f with respect to
the state xt, evaluated at µt:

Jf (µt) =
∂f

∂xt

∣∣∣∣
xt=µt

. (10)

The deviations from the mean trajectory are defined as
δxt = xt−µt. These deviations propagate approximately as
for small ϵ:

δxt+1 ≈ Jf (µt)δxt (11)

Under these assumptions, the covariance propagation re-
duces to:

Σt+1 = Ext∼Q

[
(δxt+1)(δxt+1)

T
]
, (12)

Σt+1 = Jf (µt)ΣtJf (µt)
T . (13)

F. Link Between Q and Σt

• Distribution of Predicted States Q(x̂t | x0) is the
distribution of predicted states x̂t under the model
parameterized by θ, starting from the initial state x0. Q
captures the full uncertainty in the predicted trajectory,
including the initial uncertainty in x0 and its propaga-
tion through the dynamics.

• Covariance of Deviations Σt is the covariance matrix
of deviations δxt = xt − µt, where xt are the states
in Q and µt is the mean trajectory. Σt quantifies the
spread (uncertainty) of the states xt around the mean
trajectory µt.

• Connection: Q defines the full probabilistic distribution
of the predicted trajectory with Σ0 = Σ the covariance
matrix of the initial perturbation ϵ applied on x̄0,
while Σt provides a summary of Q in terms of its
second-order moments (covariance). Both Q and Σt

evolve according to the same dynamics f . The mean
trajectory µt governs the central tendency of Q, while
the Jacobian Jf (µt) determines how uncertainty (and
thus Σt) propagates through the system.

G. Impact of System Stability on Σt

The stability of the system f depends on the eigenvalues
of the Jacobian matrix Jf (µt) :

• Contracting Systems: If all eigenvalues of Jf (µt) have
magnitudes less than 1, the covariance Σt diminishes
over time, leading to convergence to a deterministic
trajectory.



• Non-Contracting Systems: If any eigenvalue has mag-
nitude greater than 1, Σt may grow, resulting in diver-
gent trajectories.

The covariance propagation over T steps (Figure 1) is
given by :

ΣT =

T−1∏
k=0

Jf (µk)Σ0

T−1∏
k=0

Jf (µk)
T . (14)

For contracting systems:

ΣT → 0 as T →∞. (15)

H. Trace of the Covariance Matrix

The trace of the covariance matrix, denoted as Trace(ΣT )
measures the total variance of the system trajectories, dis-
tributed across all principal directions of the uncertainty
ellipsoid. The trace of Σt at a specific time step t can be
expressed using the dot product as:

Trace(Σt) = Ex̂t∼Q

[
(x̂t − µt)

⊤(x̂t − µt)
]
, (16)

which is equivalent to the expectation of the squared Eu-
clidean norm of the deviations between the trajectory and its
mean:

Trace(Σt) = Ex̂t∼Q

[
∥x̂t − µt∥2

]
. (17)

This formulation shows that the trace of the covariance
matrix Σt represents the total variance of the system at
time t, distributed across all state dimensions. It establishes
a quantitative connection between the amplitude of Σt and
the empirical variance observed in the system’s trajectories
starting from initial state x̄0 perturbed by ϵ.

I. Bias-variance decomposition

To assess the impact of random perturbations ϵ in the
dataset D on the estimation of the parameterization θ, we
first reformulate the loss function using a bias-variance de-
composition. This reformulation separates the contributions
of random perturbations (variance) from those arising due
to parameterization errors (bias).

Fig. 1: The left graph shows the expansion of the uncertainty
Σ over time, while the right graph illustrates the contraction
of the uncertainty, which is related to the eigenvalue proper-
ties of the Jacobian matrix of the dynamical system.

Theorem 1 (Bias-Variance Decomposition). The multi-step
loss decomposes as:

L(θ) = Bias2T + VarT , (18)

where:

Bias2T =
1

T

T∑
t=1

Ext∼P

[
∥xt − Ex̂t∼Q[x̂t]∥2

]
, (19)

VarT =
1

T

T∑
t=1

Ext∼P [Trace(Σt)] . (20)

Proof: Starting from 7 the multi-step loss formulation:

L(θ) = Ext∼P

[
Ex̂t∼Q

[
1

T

T∑
t=1

∥xt − x̂t∥2
]]

. (21)

Expanding the expectation by leveraging it’s linearity
property:

L(θ) =
1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥xt − x̂t∥2

]]
. (22)

Decomposing the squared norm:

L(θ) =
1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥xt − Ex̂t∼Q[x̂t]

+ Ex̂t∼Q[x̂t]− x̂t∥2
]]

. (23)

Expanding the squared term, we get:

L(θ) =
1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥xt − Ex̂t∼Q[x̂t]∥2

]]
+

1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥x̂t − Ex̂t∼Q[x̂t]∥2

]]
+

2

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
(xt − Ex̂t∼Q[x̂t])

⊤(x̂t − Ex̂t∼Q[x̂t])
]]

.

(24)

The terms in the bias-variance decomposition are:
• Bias squared (Bias2T ):

Bias2T =
1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥xt − Ex̂t∼Q[x̂t]∥2

]]
.

(25)
This term represents the systematic error due to the
deviation of the mean predictions Ex̂t∼Q[x̂t] from the
true values xt. It quantifies the parametrization error
introduced by the model’s inability to perfectly capture
the true dynamics. As the bias term only depends on the
mean prediction Ex̂t∼Q[x̂t], not on the variability of x̂t

around its mean. Since this variability is irrelevant to the
bias, the inner expectation over Q becomes unnecessary
for this term.



Thus, the bias simplifies to 19:

Bias2T =
1

T

T∑
t=1

Ext∼P

[
∥xt − Ex̂t∼Q[x̂t]∥2

]
.

• Variance (VarT ):

VarT =
1

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
∥x̂t − Ex̂t∼Q[x̂t]∥2

]]
.

(26)
This term measures the average variability of the
model’s predictions x̂t around their mean Ex̂t∼Q[x̂t],
aggregated across all trajectories xt ∼ P . The vector
(x̂t−Ex̂t∼Q[x̂t]) is referred to as the variance vector.
This term is related to the trace of the covariance matrix
ΣT 17, simplifying to 20:

VarT =
1

T

T∑
t=1

Ext∼P [Trace(Σt)] ,

which represents the expected norm of the uncertainty
ellipsoid caused by perturbations in the initial condi-
tions or stochastic dynamics over all initial conditions
sampled from P .

• Cross-Term:

Cross-Term =
2

T

T∑
t=1

Ext∼P

[
Ex̂t∼Q

[
(xt − Ex̂t∼Q[x̂t])

⊤

(Ex̂t∼Q[x̂t]− x̂t)
]]
. (27)

This term represents the interaction between the bias
vector (xt − Ex̂t∼Q[x̂t]) and the variance vector (x̂t −
Ex̂t∼Q[x̂t]). Under the assumption that these two vec-
tors are uncorrelated or independent, the cross-term
vanishes:

Ext∼P

[
Ex̂t∼Q

[
(xt − Ex̂t∼Q[x̂t])

⊤

(Ex̂t∼Q[x̂t]− x̂t)
]]

= 0. (28)

It implies a situation where the model does not overfit
the noise ϵ during training. The model is effectively
separating the true signal (captured in the bias) from
the noise (captured in the variance). This ensures that
the predictions remain generalizable and not overly
influenced by specific random perturbations in the data.

Under this hypothesis, the loss simplifies to 18:

L(θ) = Bias2T + VarT .

Corollary 1 (Effect of Recursive Steps on Variance). For
contracting systems, where the norm of the Jacobian satisfies
∥Jf (µt)∥ < 1, the variance Σt at each time step t decreases
monotonically.

Consequences:
1) The total variance satisfies:

Trace(ΣT+1) < Trace(ΣT ). (29)

and equivalently:

VarT+1 < VarT , (30)

2) As T → ∞, the time-averaged variance converges to
zero:

Trace(ΣT )→ 0.

Subsequently, for sufficiently long T and dynamical sys-
tem with contractive properties, the loss function L(θ)
18 tend to only represents the bias component related to
parametrization error θ ̸= θ∗.

J. Impact on Gradient Descent Optimization

In order to optimize the parametrization of f , we consider
the gradient descent method:

θk+1 = θk − η∇L(θk), (31)

where k corresponds to the gradient descent step, and η is
the learning rate.

From Theorem 1, the gradient ∇L(θ) is given by:

∇L(θ) = ∇Bias2T +∇VarT , (32)

= ∇ 1

T

T∑
t=1

Ext∼P

[
∥xt − Ex̂t∼Q[x̂t]∥2

]
+∇ 1

T

T∑
t=1

Ext∼P [Trace(Σt)] . (33)

Corollary 2 (Expected Improvement in the Loss Function).
The expected improvement in the loss function L(θ) at each
gradient descent step is given by:

L(θk)− L(θk+1) ≈ η∥∇L(θk)∥2, (34)

where the squared norm of the gradient can be expanded as:

∥∇L(θk)∥2 = ∥∇Bias2T ∥2 + 2∇Bias2T · ∇VarT
+ ∥∇VarT ∥2.

(35)

Substituting this expansion into the loss improvement equa-
tion yields:

L(θk)− L(θk+1) ≈ η
(
∥∇Bias2T ∥2 + 2∇Bias2T · ∇VarT

+ ∥∇VarT ∥2
)
.

(36)

Implications for Contractive Dynamical Systems

• For large T , variance terms (2∇Bias2T · ∇VarT ,
∥∇VarT ∥2) and diminish, and loss improvement is
dominated by ∥∇Bias2T ∥2.

• Small T amplifies gradient variance components, reduc-
ing expected loss improvement.



Implications for Non-Contractive Dynamical Systems

• For large T , variance terms may grow due to trajectory
divergence, overshadowing bias reduction.

• Small T mitigates variance divergence, stabilizing gra-
dients but potentially limiting accuracy.

Theorem 1 and its corollaries highlight the interplay
between bias and variance in gradient descent optimization.
These results underscore the importance of leveraging the
system’s dynamic properties and carefully managing vari-
ance through T to achieve effective and robust parameter
optimization.

IV. EXPERIMENTAL SETTING

A. Empirical Study Design

In this section, we outline the training setup used to
empirically study the evolution of the bias-variance decom-
position (Theorem 1) across multiple training epochs. To
account for variability due to initialization, the experiments
are conducted using five different initial parameterizations
θ. All experiments are performed with a sampling period of
∆t = 0.05 seconds, and the number of assessed autoregres-
sive steps T is set to T ∈ {1, 4, 8, 16}. The dynamical system
x̂t+1 = f(x̂t, ut, θ) is represented by a fully connected
multi-layer perceptron (MLP) with a single hidden layer
of eight neurons. Training is carried out using the Adam
optimizer [16] with a learning rate of η = 0.001. To investi-
gate the dynamics of contractive and partially contractive
systems, we employed two distinct dynamical systems to
generate the dataset D: the forced Duffing oscillator and
the Lorenz system. These systems were specifically chosen
to demonstrate contrasting contractivity properties, providing
complementary perspectives on the behavior of dynamical
systems under different regimes. For both systems, 100
trajectories of 20 seconds each were generated using the
forward Euler method with a fixed sampling period of
∆t. Initial conditions were uniformly sampled from [−5, 5],
ensuring a diverse representation of the state space.

The forced Duffing oscillator is a nonlinear dynamical
system with parameters specifically tuned to exhibit contrac-
tive properties. Its state-space representation is:

ẍ+ δ ẋ+ αx+ β x3 = F cos(ωt),

where x is the displacement, ẋ the velocity, and ẍ the
acceleration. The system parameters include: δ = 0.5: mod-
erate damping coefficient, ensuring energy dissipation while
allowing oscillations. α = 1.0: linear stiffness, providing
a restoring force. β = 0.1: small nonlinear stiffness, con-
tributing stabilizing effects for large displacements. F = 1.0:
forcing amplitude, introducing significant external periodic
energy. ω = 1.0: forcing frequency, governing the oscillation
rate of the periodic input. This parameter set ensures that
the system exhibits strong damping and bounded oscillatory
behavior, though the increased forcing amplitude (F =
1.0) introduces greater variability in trajectories. While the
damping and restoring forces dominate, the periodic energy

injection prevents strict global contractivity, though local
contractivity is retained near periodic attractors.

To contrast the forced Duffing oscillator, we employed
the Lorenz system, a well-known dynamical system that
exhibits partially contractive properties. Its dynamics are
governed by:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz,

where σ, ρ, and β are the system parameters.
The Lorenz system’s behavior is highly dependent on the

region of the state space: In some regions, particularly near
stable fixed points, trajectories exhibit contractive behavior,
as nearby points converge due to the system’s attractors.
However, non-contractivity dominates in regions near bifur-
cation points or within the chaotic Lorenz attractor. Specifi-
cally, in the ”wings” of the attractor, trajectories repeatedly
diverge and converge as they spiral, creating a complex
interplay of local contraction and divergence. For this study,
we selected: σ = 10, ρ = 14, β = 8

3 .. With these
parameters, the Lorenz system transitions out of the classical
chaotic regime, exhibiting complex, yet partially convergent
dynamics. The reduced ρ value moderates the chaotic behav-
ior, increasing the likelihood of transient contractive regions
before divergence dominates. This configuration highlights
the Lorenz system’s sensitivity to initial conditions and its
partially contractive nature, in contrast to the Duffing oscil-
lator’s more consistent behavior. In both case, observations
are generated with an ϵ noise corresponding to a diagonal
covariance matrix Σ with standard deviation of 0.05 over
each state variable.

B. Empirical Bias-Variance Computation

The exact computation of the bias-variance decomposi-
tion requires the dataset D to include repeated versions
of the same trajectory with different perturbations. These
repetitions are necessary to estimate V arT and Bias2T . To
validate the conclusions of the proposed theorem and its
corollaries, we use Algorithm 1. This algorithm computes
Bias2T and V arT over N deterministic trajectories x̄0:T ,
generated from P (x0, uT ) and perturbed K times by adding
noise ϵ ∼ N(0,Σ). Bias and variance are tracked for
each θk parametrization, with gradient descent updating the
parameters based on only one perturbed version of each of
the N trajectories. 1

V. RESULTS

The Figure 2 illustrates the temporal evolution of the Root
Mean Squared Error (RMSE) across trajectories generated
over a ten-second period for both the Duffing and Lorenz
systems. For the Duffing system, the results demonstrate
improved generalization capability as the T parameter in-
creases. This improvement is accompanied by a reduction
in prediction variability, visualized through the uncertainty

1Due to anonymization restrictions, we are unable to provide our GitHub
link at this stage. It will be included in the camera-ready version upon
acceptance.



Algorithm 1 Empirical Bias and Variance Computation

1: for (x̄0, . . . , x̄T ), (u0, . . . , uT ) ∈ D do
2: 1. Generate Perturbed Trajectories:
3: for j = 1→ K do
4: Sample noise: ϵ ∼ N (0,Σ)
5: x0j ← x̄0 + ϵ, x̂0j ← x0j

6: for t = 1→ T do
7: Predict: x̂tj ← f(x̂t−1j , ut−1, θ)

8: 2. Compute Bias and Variance over all K
9: for t = 1→ T do

10: E[x̂t]i ← 1
K

∑K
j=1 x̂tj

11: Var[xt]i ← 1
K

∑K
j=1(E[x̂t]i − x̂tj)

2

12: 3. Compute Aggregate Metrics over D:
13: V arT = 1

N

∑N
i=1

1
T

∑T
t=1 ∥Var[xt]i∥2

14: Bias2T = 1
N

∑N
i=1

1
T

∑T
t=1 ∥xi

t − E[x̂t]i∥2
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Fig. 2: Temporal evolution of RMSE ±0.05std for au-
toregressive predictions over a 10-second horizon. The left
subfigure illustrates the forced Duffing oscillator, the right
subfigure depicts the Lorenz system.

bands corresponding to ±0.5σRMSE . These trends highlight
the benefits of leveraging larger T values in systems exhibit-
ing contractive properties.

For the Lorenz dynamical system, increasing T does not
consistently lead to a reduction in RMSE across all prediction
horizons. For short-term predictions, RMSE is lower when
training with smaller T values, while for longer horizons, a
tradeoff emerges where an intermediate T provides optimal
performance. The Lorenz system exhibits locally strong non-
contractive behavior, making it highly sensitive to initial
conditions. This sensitivity leads to an irreducible error
introduced by increasing the number of autoregressive steps,
which persists during training. Consequently, extending T
highlights a fundamental limitation: the tradeoff reflects a
balance between the destabilizing effect of small T , where
noise fluctuations can cause the model to diverge over time,
and the irreducible error from initial condition sensitivity,
which results in diverging trajectories during training.

The Figure 3 illustrates the evolution of the variance
V arT during each epoch of the training process. For larger
T , the initial parametrization θ0 of the neural network
fails to align with the underlying contractive property of
the Duffing system, as the model has not yet learned to
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Fig. 3: Evolution of V arT ± 0.5std across training epochs
for different values of the autoregressive step T . The left
figure illustrates the Duffing system, while the right figure
represents the Lorenz system.

reproduce the system’s underlying behavior, resulting in
higher initial V arT values. However, as training progresses
and the parametrization of f quickly converges toward an
approximation of the observed system dynamics, V arT
gradually asymptotically converges toward decreasing values
ordered by increasing T . We argue that this asymptotic phase
corresponds to a situation where the θ parametrization is
close to a minimum of the loss L(θ), but the presence
of gradient noise associated with V arT prevents precise
convergence to this minimum, resulting in a ”noise floor.”
In accordance with Corollary 1, increasing T reduces sen-
sitivity to this noise, allowing the model to approach the
minimum more closely by mitigating the ”noise floor” effect.
This improved parameter identification facilitates a reduction
in error during long-horizon simulations, as illustrated in
Figure 2. In the case of the Lorenz system, due to the
presence of strongly non-contractive regions in the phase
space, we observe the opposite scenario. An increase in the
asymptotic value of V arT during training is observed with
increasing T , which can be attributed to the model learning
the dynamics of the underlying system that exhibits non-
contractive properties. Despite this increase in V arT , the
results observed in Figure 2 still benefit from longer T .

To further analyze the performance gains observed with
increasing T in the Duffing and Lorenz case, the Figure 4
study the ratio Bias2T

L(θ) , which represents the proportion of the
loss L(θ) attributed to parametrization error independently
of initial noise perturbations. This ratio provides insights
into the signal-to-noise ratio’s contribution to the final com-
puted gradient. A higher ratio indicates that the model is
more influenced by the systematic error arising from its
parametrization, while a lower ratio suggests that gradient
updates are increasingly dominated by noise fluctuations.

In the Duffing case, as T increases, we observe a system-
atic increase in Bias2T

L(θ) , reflecting improved parametrization
alignment with the underlying dynamics. This increase in-
dicates that the model’s gradient updates are less perturbed
by noise throughout the training phase, enabling more stable
convergence toward a loss minimum that corresponds to a
better long-term representation of the underlying dynamical
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Fig. 4: Evolution of the Bias2T contribution to the loss
function L(θ) over training epochs for the Duffing (left) and
the Lorenz system (right) with uncertainty band ±0.5std.

system. By contrast, in the Lorenz case, the ratio exhibits
a less pronounced increase with increasing T , revealing
the emergence of a trade-off and highlighting the challenge
of noise amplification due to the system’s non-contractive
regions. These findings underscore the differential impact of
T on gradient stability and parametrization accuracy between
the two systems, explaining the RMSE evolution over long
simulation horizons.

VI. LIMITATIONS

While the proposed framework provides insights into the
link between performance improvement with longer train-
ing horizons and the underlying contractive properties of
dynamical systems, several limitations of this work must be
acknowledged. 1) Assumptions on Noise and Dynamics: The
analysis assumes Gaussian noise with a known covariance
matrix and linearizable dynamics near the mean trajectory.
Although these assumptions simplify the theoretical frame-
work, they may not fully capture the behavior of highly
nonlinear systems or account for scenarios requiring higher-
order statistics for uncertainty propagation. 2) Experimental
Scope: To illustrate the theoretical results, experiments were
conducted on two contrasting systems: the forced Duffing
oscillator, exhibiting strong contractive properties, and the
Lorenz system, which locally exhibits strong non-contractive
properties. However, real-world scenarios may involve more
nuanced systems, falling between these extremes. In such
cases, increasing the horizon can still provide value, even
for moderately non-contractive systems, as it results from
a trade-off between bias and variance, despite the variance
diverging over time.

VII. CONCLUSION AND FUTURE WORK

In this study, we investigated the statistical and mathe-
matical properties of multi-step loss function estimators in
the context of dynamical system identification. By leveraging
a bias-variance decomposition framework, we demonstrated
how multi-step training improves the predictive performance
of neural network models, particularly through the reduction
of variance during the convergence phase in the case of
contractive dynamical systems. These findings provide a

deeper theoretical foundation for understanding the behavior
of multi-step estimators.

The empirical results align with theoretical insights,
demonstrating that increasing the number of autoregressive
steps during training significantly improves long-term pre-
diction accuracy. This increase enhances gradient stability by
reducing perturbation effects, ultimately leading to improved
convergence properties. Future work could explore alterna-
tive formulations of the multi-step loss function using the
provided statistical indicators to enhance training stability.
This could involve accounting for local system properties,
such as systems with locally non-contractive patterns, to
adapt the autoregressive horizon locally. Further extensions
could consider higher-order effects of uncertainty propaga-
tion. In summary, this work bridges theoretical advancements
and practical applications in system identification, contribut-
ing to the development of more robust and reliable models.
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