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Abstract— State estimation in the context of dynamical
systems is crucial for various applications, including control
and monitoring. Moving Horizon Estimation (MHE) is an
optimization-based state estimation algorithm that leverages a
known dynamical model integrated over a moving horizon. The
MHE optimization criterion corresponds to identify the initial
state that best aligns the integrated trajectory with the system
observation. In MHE setting, the state estimation performance
increases with the considered length of the moving horizon but it
can become computationally intensive which is a limiting factor
for its applicability to fast-varying dynamical systems or on
hardware with restricted computational power. Deep Learning
(DL) methods can learn solutions to complex optimization
problems without incurring any additional online computational
cost beyond the inference of the considered architecture. In
the context of state estimation we propose to study different
type of DL architecture in order to provide full state estimation
from partial and noisy system observations. The novel proposed
method is based on an end-to-end differentiable formulation of
the MHE optimization problem, enabling the offline training
of a DL model to provide a state estimation that minimizes
the MHE optimization criterion. Once training is completed,
state estimations are generated through an explicit relationship
learned by the DL model. The proposed method is compared to
the online MHE formulation in various case studies, including
scenarios with partially observed state and model discrepancies
in the context of lateral vehicle dynamics. The results highlight
improved state estimation performance both in terms of reduced
computational time and accuracy with respect to the online
MHE algorithm.

Index Terms— State Estimation, Moving Horizon Estimation,
Deep Learning

I. INTRODUCTION

Estimating the state of dynamical systems from measure-
ments has been a persistent challenge in control theory. This
complexity stems from various factors such as integration
constraints due to sensors, limitations in extreme local
conditions, the absence of sensors for specific measurements,
or simply cost constraints. Overcoming these obstacles is
crucial for the development of effective controllers, especially
when dealing with states that cannot be directly measured.
The problem of state estimation was initially introduced
by Kalman in his seminal paper from 1960 [1]. Kalman
extended this study to linear stochastic systems, providing

guaranteed optimal state estimation under Gaussian noise
in 1961 [2]. Luenberger further contributed to the field by
presenting a generalized theory of state observers for linear
deterministic systems, introducing the concepts of reduced and
minimal state observers [3], expanding the understanding and
applicability of state estimation techniques. The prevalence of
nonlinear systems has driven the development of state estima-
tion methods beyond linear observers. The Extended Kalman
Filter [4] addresses nonlinearity through linearization, but its
accuracy is locally limited, leading to potential inaccuracies
in the presence of strong nonlinear behavior. In contrast to
these approaches, Moving Horizon Estimation (MHE) [5] is
an optimization-based state estimation method. In MHE, state
estimation is performed by solving a real-time optimization
problem that minimizes an approximate optimal control cost
function over a defined moving horizon. This method has
the advantage of handling various uncertainty distributions
while explicitly accounting for physical constraints on both
states. Moreover, MHE shows great promise, particularly for
nonlinear state estimation, due to its robust stability properties
[6]. The performance of MHE improves as the length of
the receding horizon increases. However, this also leads
to a computational burden proportional to the size of the
considered interval horizon. In this work, a methodology is
proposed to train a DL model to learn a solution for the MHE
optimization problem, specifically for full-state estimation
from partial and noisy system observations.

Key contributions of this paper are the following : 1) The
proposed method is built on a fully differentiable formulation
of the MHE optimization problem, leveraging the automatic
differentiation (AD) framework [7]. This enables the DL
model to learn a direct relationship that approximates the
solution of this problem during an offline training period
on a dataset containing system observations. 2) After the
training phase, the DL model can provide state estimation
with significantly improved computation time compared to
the online MHE (OMHE) algorithm by not relying on any
additional optimization process. 3) The training process
leverages modern DL inductive bias to estimate solutions
that globally minimize the MHE criterion across the entire



dataset at all time steps, eliminates the need for arrival cost
terms as in the OMHE algorithm to maintain consistency in
the sequence estimation over time. Experimental results show
improved performance on complex cases, including those
with model discrepancies, compared to the OMHE algorithm.

II. RELATED WORK

Recently breakthroughs in DL algorithms have sparked
a growing interest in applying these methods within the
domain of dynamical systems. In the realm of state estimation,
KalmanNet [8] is a neural network-based state estimator that
learns from data within a Kalman filtering framework. It
addresses nonlinear dynamics and partial information by
incorporating the structure of a state space model into a
recurrent neural network (RNN) architecture. KalmanNet
effectively manages nonlinearities and model mismatches,
outperforming traditional filtering methods in situations with
both accurate and inaccurate domain knowledge. Similarly,
Backprop KF [9] leverages RNNs within a probabilistic state
filtering framework, enabling the design of network architec-
tures specifically tailored for state estimation. The method is
designed to train state estimators that utilize complex input
sensors, such as images, and demonstrates significant improve-
ments over both standard generative approaches and regular
RNNs. In MHE context, [10] addresses the problem of online
state estimation and parameter tuning for constrained linear
systems by employing a differentiable convex optimization
layer to formulate a MHE state estimator using stochastic
gradient descent (SGD). Their method is suited for the case
of constrained linear systems with parametric uncertainty
and show improvement in the performance with respect to
the OMHE formulation. In a closely related context outlined
in [11], a two-step data-driven MHE-based framework is
introduced. The authors leverage an AutoEncoder to construct
a surrogate model capable of preserving the states of complex
and computationally demanding digital twins. Subsequently,
the AutoEncoder is harnessed for online state estimation from
noisy measurements. Recently, a paradigm shift in solving
inverse problems has emerged through the application of
machine learning (ML) models. These models can learn
to optimize or directly provide solutions to optimization
problems, thereby improving the accuracy and computational
efficiency of estimates. In this context, the MHE method
involves estimating the state by solving an inverse problem
based on an implicit relationship between the initial state
of an initial value problem (IVP) and a sequence of system
observations. Identifying the initial state requires minimizing
this implicit formulation using an iterative solver, which
is known to be time-consuming. Following this paradigm,
there has been growing interest in using ML models to
learn approximate solutions to the MHE problem. In [12] a
one-layer perceptron is estimated by solving a nonlinear
programming problem in order to learn to minimize in
offline manner an MHE optimization problem. In [13] multi-
layer perceptron is used to learn approximate solutions of
simultaneously solution for the MHE and Model Predictive
Control (MPC) problems using data generated by OMHE and

MPC algorithms in order to significantly reduce computational
cost to obtain state estimates. In a related direction, the
proposed method in this paper rely on a fully differentiable
formulation of the MHE optimization criterion allowing to
learn to a DL model to infer MHE solution directly from
measurement data without relying on OMHE estimation such
as in [13]. In order to evaluate the influence of modern DL
inductive biases on estimated performance, a comprehensive
comparison between different DL models is conducted.

III. PROPOSED METHOD

A general system described by a finite dimensional contin-
uous non-linear dynamic of the form is considered

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)) + η

(1)
(2)

with state x ∈ Rn, control u ∈ Rm, observation y ∈
Rp, and smooth maps : f : Rn → Rn corresponding
to the dynamical system equations, measurement function
g : Rn → Rp and η a random variable corresponding to
noise measurement. An initial strategy for state estimation
involves simulating the equations f concurrently with a
range of likely initial states chosen a priori, and iteratively
discarding those that result in an output trajectory y(t) that
deviates significantly from the observed one. If the output
y(t) uniquely determines a solution asymptotically, the set
of feasible initial states converges to a single possibility.
Conversely, if multiple initial states persistently yield feasible
solutions, this situation corresponds to a system with non-
observable states. In this paper, the focus is on system where
the state is globally observable. Based on this principle, the
state estimation problem can be formulated as an optimization
problem with the following criterion:

L(x(t0)) =
∫ t0+Tf

t0

(
ŷ(x(t0), f, u, τ)− y(τ)

)2

dτ (3)

x∗(t0) = min
x(t0)

L(x(t0)) (4)

with x∗ that corresponds to the initial state that minimizes the
difference between the simulated ŷ and the measured state
variable trajectory y. This minimization problem is solved
over a time horizon τ ∈ [t0, Tf ] obtained from the solution of
an IVP involving the system dynamic f under the influence
of the control input u:

ŷ(x(t0), f, u, τ) = g
(
x(t0) +

∫ t0+τ

t0

f(x(t), u(t))dt
)

(5)

The proposed method aims to recover all state variables
from noisy and partial system measurements y, implying that
n > p, by using a DL model ϕ that learns to predict the
initial state estimation x(t0), minimizing L over the future
horizon Tf :

x(t0) = ϕ
(
y(t0), y(t0 − τp), . . . , y(t0 − Lτp; θ

)
(6)

with L the total number of past samples considered, such
that Tp = t0 − Lτp corresponds to the past horizon, and



θ representing the parametrization of the DL model. For
training purposes, the loss function (3) is reformulated in a
discretized version:

L(θ) = 1

MK

M∑
m=0

K∑
k=0

(
ŷ(ϕ, f, u, t0 + kτf )− y(t0 + kτf )

)2

(7)

where τf is a future delay separating each sample and Tf =
t0+Kτf and M corresponds on the number training trajectory
available in the dataset D. State trajectory estimates ŷ are
obtained using numerical integration method :

ŷ(ϕ, f, u, t0 + kτf ) = g ◦ F k ◦ F k−1 ◦ · · · ◦ F 0(x(t0), u(t0)) (8)

with F (x(t), u(t)) = x(t+ τf ) corresponding to a one-step
forward Euler integration method starting from x(t0):

x(t+ τf ) = f(x(t), u(t))τf + x(t) (9)

By implementing f and g model under PyTorch framework,
it allows to build a computational graph of the numerical
integration schema, and, by using AD algorithm to makes
the MHE optimization problem fully differentiable in order
to obtain gradient with respect to parametrization θ by
backpropagating gradient over time from t0 + kτf to t0 :

∂ŷ(ϕ, f, u, t0 + kτf )

∂θ
=

∂g

∂F k

i=k−1∏
i=0

∂F i+1

∂F i

∂F 0

∂ϕ

∂ϕ

∂θ
(10)

The proposed method differs from the OMHE algorithm as
there is no arrival cost in the loss (7). In the sequential context
of the OMHE algorithm, this cost is used to penalize the
difference between the previous estimate and the current one.
This allows for maintaining consistency between successive
estimates and ”virtually” increasing the length of the moving
window by re-injecting prior state estimate knowledge from
the past to the current estimate. The proposed method
transforms the temporally localized optimization problem at
a current time step in the OMHE context into an optimization
problem that operates at all time steps available in D. In
this case, adding an arrival cost is unnecessary because the
DL model inherently learns to preserve continuity across its
predictions by minimizing loss (7) over the entire dataset
D. Additionally, the proposed fully-differentiable MHE loss
eliminates the need to supervise the training directly with
state estimation generated by the OMHE algorithm, as in
[13], and extends the method to more efficient optimization
techniques than in [12], such as gradient descent, allowing for
the use of more complex DL models. Another motivation for
the MHE formulation, compared to other state estimators, is
the ability to apply constraints on state estimation by adding
penalization terms to the optimization criterion. Although not
covered in this paper, the imposition of constraints on the
estimated state can be easily extended by adding terms to
the loss function (7).

IV. EXPERIMENTAL SETTING

This section describes the experimental settings of the
realized numerical study in order to evaluate the performance
of the proposed method. This study is performed over various
configurations of future Tf : {0.1, 0.2, 0.4, 0.8} and past

Tp : {1, 2, 3, 4} horizons. It includes different DL models,
specifically one-dimensional convolutional neural networks
(CNN) [14] choosen for their capability to effectively captures
local patterns and temporal dependencies at different scales,
gated recurrent unit (GRU) [15] for their capability to capture
sequential dependencies and maintain information across time
steps, and a reduced and 1D version of CNN transformers
(CNN-T) models allowing for handling of complex temporal
relationships such as in [16]. All experiments are performed
with corresponding parameters τp = 0.02 and τf = 0.02.

Case study description : Case studies corresponding
to the state estimation task from noisy and partial system
measurement data generated by the Van der Pol [17] and by
the forced Duffing oscillators [18] are included. Both of these
systems have a two-dimensional state vector x = [x0, x1]

T

with partial and noisy observability conditions corresponding
to g = diag([1, 0])x+ η. In the case of the Duffing oscillator,
the forcing function corresponds to the control input u(t) =
0.3 cos(t) and η is zero-mean Gaussian noise with a standard
deviation σ = 0.45. For the Van der Pol oscillator, the
Gaussian noise has a standard deviation σ = 1.5. In both
cases, the model f used for the training phase is similar to
the one used to generate the training and test datasets. Initial
conditions for each state variable of the simulated trajectory
are uniformly chosen from the interval [−10, 10] in the Van
der Pol case, and from [−1, 1] in the Duffing case.

A third case study on complete but noisy measurement
data in the context of lateral vehicle dynamics is included.
It corresponds to the state estimation of the lateral speed x0

in m · s−1 and the yaw rate x1 in rad · s−1 of the vehicle,
with an observation function g = diag([1, 1])x + η. In this
case study, data are generated from a ten-degree-of-freedom
vehicle model (Dof10) that includes longitudinal, lateral, and
suspension dynamics. The model f used for the training phase
corresponds to a two-degree-of-freedom (Dof2) lateral bicycle
model that neglects both longitudinal and mass transfer
dynamics [19]. This represents a case with complex nonlinear
coupling between simulated state variables and includes model
discrepancy during training. The control input u applied to the
Dof2 f model in this case is the measured longitudinal speed
vx in m · s−1 and the steering angle α in rad applied to the
Dof10 model for data simulation. Trajectories are simulated
using random initial longitudinal speeds vx uniformly sampled
from the interval [5, 25], constant front wheel torque in N ·m
uniformly sampled from the interval [50, 100], and random
sinusoidal steering α with amplitude uniformly sampled from
[−0.0872, 0.082], corresponding to ±10◦ steering angle in
degrees. A two-dimensional uncorrelated Gaussian noise η
is added to each state variable, with a standard deviation
σ = 0.1m · s−1 for the lateral speed x0 and σ = 1 deg · s−1

for the yaw rate x1.
Dataset generation : For each case study, the datasets

are generated from the numerical integration of equations
describing the dynamical behavior of each previously men-
tioned system with an integration step of 10−3 seconds, 200
trajectories are simulated for the Van der Pol and the Forced
Duffing, 300 trajectories are generated from the Dof10 vehicle



Method CNN GRU CNN-T OMHE
Case study Horizon (Tp) x0 x1 x0 x1 x0 x1 x0 x1

Van Der Pol

0.5 0.3687 ± 0.003 0.6715 ± 0.0093 0.3681 ± 0.0038 0.6651 ± 0.01 0.395 ± 0.0063 0.754 ± 0.0566 0.533 1.2407
1.0 0.3034 ± 0.005 0.3386 ± 0.0023 0.2936 ± 0.005 0.3508 ± 0.0095 0.3713 ± 0.0128 0.4494 ± 0.0247 0.3517 0.5632
2.0 0.2322 ± 0.0021 0.1786 ± 0.0119 0.2288 ± 0.0026 0.1853 ± 0.0077 0.3236 ± 0.0256 0.3031 ± 0.029 0.2385 0.261
4.0 0.1709 ± 0.0061 0.1127 ± 0.0016 0.1503 ± 0.0022 0.1064 ± 0.0071 0.2891 ± 0.0227 0.2082 ± 0.0354 0.1657 0.0689

Duffing

0.5 0.1405 ± 0.003 0.4129 ± 0.0104 0.1345 ± 0.0002 0.385 ± 0.0011 0.1836 ± 0.018 0.4549 ± 0.0202 0.1759 0.5655
1.0 0.1075 ± 0.0026 0.1677 ± 0.0026 0.1054 ± 0.001 0.1626 ± 0.0024 0.1565 ± 0.0167 0.268 ± 0.0567 0.1164 0.1843
2.0 0.0665 ± 0.0019 0.1078 ± 0.0029 0.0667 ± 0.0005 0.0988 ± 0.0039 0.1035 ± 0.0268 0.2473 ± 0.1426 0.0706 0.106
4.0 0.0553 ± 0.0006 0.0893 ± 0.0044 0.0536 ± 0.0003 0.0869 ± 0.0037 0.0957 ± 0.0352 0.1424 ± 0.0791 0.0546 0.0772

Dof10

0.5 0.0998 ± 0.024 0.0386 ± 0.0121 0.0589 ± 0.0053 0.015 ± 0.0031 0.1757 ± 0.1035 0.0545 ± 0.0506 0.2434 0.0226
1.0 0.0987 ± 0.015 0.0257 ± 0.0112 0.068 ± 0.0045 0.0148 ± 0.0021 0.1828 ± 0.1362 0.0543 ± 0.0292 0.3907 0.0324
2.0 0.0796 ± 0.0077 0.0188 ± 0.002 0.0656 ± 0.0048 0.0136 ± 0.0019 0.1465 ± 0.044 0.0425 ± 0.0056 0.4832 0.0376
4.0 0.1015 ± 0.0085 0.0215 ± 0.0027 0.0786 ± 0.0104 0.0106 ± 0.0008 0.1413 ± 0.0542 0.0463 ± 0.0114 0.4963 0.0384

TABLE I: This table describes the RMSE performance for each case study, deep learning architecture, state variable, and
past temporal horizon window. The RMSE values in this table are associated with the best future temporal horizons Tf : 0.8
for the Van der Pol system, 0.8 for the Duffing system, and 0.1 for the Dof10 case study. RMSE values are provided with
uncertainty corresponding to ± one standard deviation.

model with a duration T = 20 seconds. Training, validation,
and test datasets are defined by randomly splitting trajectories
according to the following proportions: 70%, 20%, and 10%.

Evaluation method : The Root Mean Squared Error
(RMSE) is used as the performance metric to measure the
prediction error between the noise-free estimates ŷ and
the estimated values y. To assess the robustness of the
proposed method, each previously mentioned experimental
configuration is repeated three times with different DL model
parameter initializations. As the method is based on MHE
optimization principle, we restricted the scope of comparison
to the OMHE algorithm using the efficient HILO-MPC Python
implementation based on Casadi and Ipopt solver [20]. The
MHE weighting parameters associated with the quadratic ar-
rival cost, measurements noise cost and state noise cost, have
been hand-tuned to ensure the best possible performance. The
implementation and experimentation details of the proposed
method are available on GitHub at https://github.com/N9TT-
9G0A-B7FQ-RANC/ICRA 2025

V. RESULTS

Table I presents the RMSE computed for each state variable
across all experimented Tp values, along with the associated
Tf value that gave the lowest RMSE on the test set. Among
the tested architectures, the GRU is globally associated with
the lowest RMSE across all case studies, closely followed
by the CNN. This can be interpreted as the adequacy of
the GRU inductive bias, which is particularly well-suited
for the sequential nature of the problem. Although the
CNN provides less consistent performance, it also seems
to be a good candidate as it sometimes outperforms the
GRU architecture. The CNN-T architecture is associated
with significant performance degradation, which can be
interpreted by the fact that the attention inductive bias
tends to partially lose temporal information in its internal
representation, providing less accurate results.

Two patterns can be identified in the evolution of the
RMSE for different values of past horizons. The first pattern
corresponds to an improvement in performance for the
proposed method and the OMHE algorithm, induced by
increasing the past horizon in the Van der Pol and Duffing case
studies. The second pattern is associated with a stagnation
in performance for the proposed method and a significant

decrease in performance for the OMHE algorithm when
increasing Tp in the Dof10 case study. In the first pattern, the
Van der Pol and Duffing oscillators correspond to cases where
the model used during training and in the OMHE algorithm
is identical to the one used to simulate the training and test
data. In this case, the CNN and GRU architectures learn
to estimate states with slightly better performance than the
OMHE method. In the second pattern, the Dof10 case study
illustrates a situation where there is a discrepancy between
the model used in the proposed method and the OMHE
algorithm, compared to the one used to simulate the training
and test datasets. In this scenario, the proposed method
significantly outperforms the OMHE algorithm. Results
indicate that for the OMHE algorithm, increasing the temporal
horizon is associated with an increase in error, whereas
for the proposed method, the error remains stagnant. This
phenomenon underscores the fundamental difference between
the proposed method and the OMHE method.

The Figure 1 illustrates the evolution of the averaged
RMSE for each state variable across different experimented
Tf and Tp values for the GRU model. The two RMSE
patterns previously mentioned can be identified: one for
the Van der Pol 1a and Duffing 1b case studies, and the
second for the Dof10 1c case study, which corresponds
to a model mismatch. In the first evolution pattern, for
the proposed method, employing the longest Tp and Tf

is associated with a reduction in RMSE. A convergence
phenomenon can be observed. After a certain Tf value,
increasing the integration time does not seem to provide
significant performance improvement. This phenomenon can
be interpreted as follows: as there is no model mismatch, the
model must learns a representation that contains enough past
temporal information to estimate the unobserved state variable.
To learn a robust representation from this past window and
fully exploit the information contained in this sequence,
longer integration times during training are beneficial. This
allows for optimizing the MHE loss over longer state variable
trajectories, resulting in a gradient from the loss function
that is more robust to noise fluctuations. This can also be
perceived by the associated variance reduction with a higher
Tf parameter. For intermediate Tp values, which correspond
to a situation where the quantity of information fed into
the architecture is reduced, the intrinsic capability of the

https://github.com/N9TT-9G0A-B7FQ-RANC/ICRA_2025
https://github.com/N9TT-9G0A-B7FQ-RANC/ICRA_2025
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Fig. 1: This figure provides RMSE for each Tp and Tf values
on each case study for the GRU architecture

model to learn a robust representation is more constrained.
Although increasing the integration time improves the quality
of the gradient during the training phase, the model is not
complex enough to benefit from this increase, leading to an
earlier stagnation point in performance compared to cases
with longer Tf values. The second pattern is associated
with the Dof10 case study, where there is a discrepancy
between the model employed during training and the one
used to simulate state variable trajectories. Increasing the Tf

parameter is associated with an increase in RMSE. During the
training phase, the DL model learns initial state estimates by
minimizing the difference between trajectories generated from
a biased model and those used to generate measurements.
Due to this bias, it is not possible to benefit from longer Tf

values, and consequently, it is not possible for the DL model
to learn to exploit information for longer Tp horizons.

The Figure 2 illustrates the previous discussions related to
Table I and Figure 1. It showcases state estimation over time
in the Dof10 case study with the GRU model. The proposed
method demonstrates significant noise attenuation, providing
smoother and less biased state estimation capabilities than
the OMHE algorithm. Although both methods are based on
similar optimization criteria, the OMHE method must ensure
consistency between the previous and current state estimates
using additional arrival cost terms in the optimization process.
In the case of using a biased model such as in the Dof10
case study, this continuity constraint can amplify the bias in
estimates. Moreover, the exploited model could be locally
biased depending on the current state localization, meaning
that the weighting of this cost could vary over time with
respect to the current model bias to achieve improved
performance. The advantage of the proposed method is that
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Fig. 2: This figure shows the state estimation capabilities
over time for the proposed method, for the lateral speed x0

and yaw rate x1 variable in the Dof10 case study.

it does not rely on this arrival cost, allowing the model to
learn to maintain maximum smoothness in its predictions and
minimal bias by being trained on an entire dataset D that is
representative of the underlying state estimation problem.

The table II shows the computation time, in milliseconds,
required to obtain a state estimation for different model
architectures compared to the OMHE algorithm, the ex-
periments were conducted on a machine equipped with an
12th Gen Intel Core i9-12900H. In accordance to [12] and
[13], results show that leveraging DL model to learn an
approximate solution of the MHE problem can significantly
reduce the online computational cost associated with obtaining
state estimates. The proposed method offers nearly constant
prediction times across all case studies, in contrast to the
OMHE algorithm which depends both on the complexity of
the numerical integration time of the system f and on the
online solver used to optimize MHE criterion. Depending on
the case study, and the DL model, the proposed approach
can reduce computation time by a factor ranging from 10
to 100 compared to the OMHE algorithm. This, combined
with the previously discussed performance in terms of RMSE,
highlights the main advantage of the proposed method, which
allows for the use of DL architectures to achieve accurate and
near-instantaneous state estimation from complex mechanical
system such as the lateral vehicle dynamic and from partial
observation such as in the case of the Van der Pol and Duffing
systems.

Limitation : Despite the promising results discussed,
the proposed approach has several limitations that should be
acknowledged. First, the method must relies on a sufficient
quantity of data to ensure generalization capabilities across the

Method
Case study Horizon (Tp) CNN GRU CNN-T OMHE

Van Der Pol

0.5 0.0004 0.0023 0.001 0.1479
1.0 0.0004 0.005 0.001 0.204
2.0 0.0003 0.0078 0.001 0.3197
4.0 0.0003 0.016 0.0014 0.559

Duffing

0.5 0.0004 0.0026 0.0013 0.1209
1.0 0.0003 0.0041 0.0015 0.1555
2.0 0.0003 0.008 0.0014 0.2295
4.0 0.0003 0.015 0.0017 0.4157

Dof10

0.5 0.0004 0.0024 0.0012 0.1155
1.0 0.0003 0.0067 0.001 0.1599
2.0 0.0003 0.0087 0.0011 0.249
4.0 0.0005 0.0146 0.0011 0.4328

TABLE II: This table provides a comparison of computation
time, in milliseconds, for the different deep learning models
and online MHE across each case study and past horizons.



entire state and control space. This requirement assumes that
the underlying system is time-invariant, which is necessary
to prevent the learned relationships from becoming invalid
over time. Additionally, the scope of the proposed method
is restricted to deterministic state estimation, providing only
point estimates over time. While this may be sufficient for
some applications, it does not account for the uncertainty in
state estimates, which is crucial in certain use cases. Future
research could explore the incorporation of probabilistic
DL model within the proposed training scheme to provide
uncertainty estimates. Another limitation is related to the
potential bias introduced when using an a priori known model
that is not fully accurate with respect to the observations.
This bias can lead to inaccuracies in the state estimates. To
address this, a promising research direction could involve
developing a fully data-driven training pipeline where both
the initial state and the integrated model are learned directly
from data, thereby reducing dependence on potentially biased
models.

VI. CONCLUSION

This paper introduces a novel approach to training deep
learning (DL) models to predict state estimation that approx-
imates the solution of a Moving Horizon Estimation (MHE)
optimization problem for nonlinear dynamical systems. The
method leverages inductive biases from recent DL models
to learn a model that takes as input a past and partial
horizon window of system measurements and outputs full-
state estimation. The learning process is based on a fully
differentiable loss function that corresponds to the MHE opti-
mization problem, allowing the DL model to be trained with
improved performance in terms of state estimation accuracy
and computation time across different case studies compared
to the classical MHE algorithm. Even without relying on
arrival cost terms, the training formulation optimizes the
MHE criterion over all available data, ensuring continuity in
predictions and minimizing bias in the estimates. Moreover,
the learned relationship allows for quasi-instantaneous state
estimation without relying on the a priori known dynamical
model, reducing computation time by up to a hundredfold
compared to the online MHE algorithm. Although we
did not assess the proposed method using data from real-
world systems, the results obtained from leveraging a two-
degree-of-freedom vehicle model on simulation data derived
from the ten-degree-of-freedom vehicle model, provide a
scenario with discrepancies similar to those encountered
in real-world applications. Moreover, Gaussian noise was
applied to all measurements, with variance exceeding that
typically in embedded sensors. These factors, combined with
the flexibility of the training formulation provide a strong
foundation for future research to extend the proposed method
to real-world case study and to other estimation tasks in
dynamical system context such as parameter estimation.
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