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Abstract— Simulating long state variable trajectories using
neural networks models is a complex problem that requires
auto-regressive prediction. In this context, poor generalization
capabilities increase the risk of error accumulation over time.
Physics-guided machine learning is an emerging field that
combines the strengths of physics-based modeling with data-
driven approaches by incorporating physical knowledge into
machine learning models. The aim of this paper is to tackle
the problem of long-horizon simulation using neural network
models that exploit prior knowledge about underlying physical
processes under noisy and disturbed data acquisition. This
paper introduces a robust methodology for training a multi-
layer perceptron (MLP) model using noisy and disturbed system
measurements. Our approach leverages a custom loss function
designed to minimize auto-regressive prediction errors across
extended time horizon, ensuring alignment between predicted
trajectories and actual state variable measurements. We further
enhance model performance through transfer learning, utilizing
simulated data generated from a pre-existing dynamical model
where parameters have been estimated using Bayesian inference
techniques allowing to leverage prior knowledge in the transfer-
learning process. Comprehensive evaluation demonstrates the
robustness of our method on the case of the lateral dynamic of
vehicle. We assessed our methodology on real-world measure-
ments and show its competitiveness over traditional methods.

I. INTRODUCTION

Accurate dynamical models are essential for performing
numerical simulations, which are crucial tools in various
engineering tasks. Numerical simulations enable engineers to
predict and analyze the behavior of complex systems under
different conditions without the need for extensive real world
experiments. This capability is essential for designing and
optimizing engineering systems, performing safety assess-
ments, and developing control strategies [1]. However, ob-
taining accurate dynamical models that can provide reliable
long-horizon simulations remains a challenging problem [2].
The complexity of real-world systems, coupled with uncer-
tainties in model parameters and external disturbances, often
leads to significant deviations between simulated and actual
system behaviors over extended time horizon due to poor
generalization capabilities and increasing error propagation
over time. Physics-based approaches to dynamical system
modeling involve deriving equations that describe system

behavior based on first principles. However, designing these
models manually can be tedious, as it requires a deep
understanding of the involved physical principles. To make
the problem tractable, these models often rely on simplifying
assumptions that introduce biases, limiting their accuracy
and applicability in real-world scenarios, especially for long-
horizon simulations. Despite these limitations, Physic-based
approaches have the advantage of relying on small amounts
of data to estimate a limited number of parameters that are
clear, interpretable, and fully describe the model behavior.
On the other hand, learning-based approaches represent a
general-purpose method for modeling dynamical systems.
These methods have high modeling capabilities and can
capture complex system behaviors with relatively few as-
sumptions. This flexibility allows them to adapt to a wide
range of applications and system dynamics. However, this
flexibility also comes with a significant risk of overfitting
[3] and generating solutions that do not adhere to physical
principles outside the training dataset domain. Obtaining
such models requires datasets that cover the entire state and
control space of the system. This dependence on exhaustive
datasets can be a limitation in scenarios where data is scarce
or expensive to obtain. The field of physics-guided machine
learning [4] offers a promising approach by combining the
strengths of both physics-based modeling and data-driven
methods. This synergy aims to achieve accurate dynamical
models, offering improved performance in scenarios with
small data or unbalanced distributions. However, efficiently
merging both sources of information can be challenging,
as significant biases in prior knowledge can contribute to
degrade the overall performance of the final model. Each
previously mentioned modeling method relies on data that, in
a real-world context, involves dealing with noisy, disturbed,
and unevenly spread measurements. These challenges make
it difficult to capture accurate system behavior. Consequently,
the scope of this paper is twofold: first, to propose a robust
methodology for training a neural networks architecture on
noisy and disturbed data acquisition effectively; and sec-
ond, to ensure enhanced generalization capabilities for long-
horizon simulations by leveraging prior knowledge about the



underlying physics in context of the vehicle lateral dynamic.
The contributions presented in this paper are as follows:

1) An approach is introduced to integrate prior physical
knowledge into the neural network training process
using transfer learning techniques. This enables the
transfer of knowledge from a source dataset, obtained
from simulations of a known physical model, to a
target dataset comprising real-world data.

2) A fully-differentiable auto-regressive loss function is
proposed during the fine-tuning process to ensure ro-
bust training of the neural network.

3) Simulation data is generated using a physics-based
model with parameters previously estimated from real-
world measurements. Bayesian inference techniques
are employed to incorporate prior knowledge at the
parameter level of the physical model during estima-
tion.

4) A comprehensive evaluation is provided demonstrat-
ing that the proposed method outperforms existing
approaches in long-term simulation.

The paper is organized as follows: Section II reviews the
related work and section III sheds light on the proposed
method. Section IV depicts how its empirical evaluation
was conducted while section V discusses our experimental
evaluation. Furthermore, Section VI provides a discussion on
limitations. Finally, a section for conclusion and perspectives
brings the paper to a close.

II. RELATED WORK

System identification is a longstanding problem in the
field of systems engineering. In the case of nonlinear dynam-
ical systems, it involves solving ill-posed inverse problems
due to the multiplicity of likely parameter sets for physical
models [5]. Identifying these parameters from data often
involves optimizing least squares problems [6], which is
equivalent to finding the set of parameters that maximizes
the likelihood of aligning predicted state variable trajec-
tories with system observations under the Gaussian error.
In the case of poorly informative data, the multiplicity
of solutions can lead to parameter estimates that do not
extend beyond the range of measurements. To address this
challenge, Bayesian inference methods [7] have been widely
used, as they allow the incorporation of prior knowledge
about parameter distributions and act as constraints to main-
tain physically meaningful estimates in limited initial data.
Approximate Bayesian inference methods, such as the Ap-
proximate Bayesian Computation (ABC) algorithm [8], are
likelihood-free techniques that provide a straightforward way
to estimate posterior probabilities of model parameters when
dealing with intractable likelihood functions due to nonlinear
dynamical systems and non-Gaussian noise uncertainties.
These methods have demonstrated their efficacy in various
parameter estimation problems, ranging from modeling the
lateral dynamics of vehicles [9] to cases of calibrating image
simulations in cosmology [10].

Learning-based methods offer a flexible approach to di-
rectly learning complex dynamical phenomena with minimal

assumptions about the underlying process. MLPs are known
as universal function approximators [11] and have been
successfully used for system dynamics identification [12].
However, this flexibility requires a sufficient quantity of data
covering all state and control spaces of the system to ensure
generalization capabilities. Recently, ResNet architectures
[13] have been recognized for their similarity to Euler for-
ward numerical integration methods for differential equations
[14]. This analogy offers an opportunity to optimize neural
network architectures over multi-step time integrations using
automatic differentiation frameworks.

To improve the generalization performance of learning-
based methods, physics-guided machine learning aims to
incorporate prior physical knowledge into machine learn-
ing models through various mechanisms. One classical ap-
proach is to directly learn a model of discrepancies between
handcrafted models and system measurements [15]. This
approach enhances performance by learning the missing
physics corresponding to the discrepancies. Other methods
rely on physics-informed loss functions that constrain the
learning process to adhere to physical principles, such as
energy conservation, as demonstrated in Hamiltonian neural
networks [16]. Direct incorporation of physical knowledge
into neural networks has been investigated in [17], where
the form of the Lagrangian equation is integrated into the
neural network architecture, showing improved performance
over standard architectures. Transfer learning [18] involves
leveraging knowledge gained from one task learned from a
source dataset to enhance learning on a related task with
a target dataset. This typically entails reusing features or
representations learned from the source task to aid learning
on the target task, which may have less data available but
related characteristics. This approach has been investigated
in the context of robotics to adapt simulation domains to real-
world applications [19] showing improved learning speed in
context of robotic haptic problems.

III. PROPOSED METHOD

A. Overview

In the context of Transfer Learning, the method proposed
in this paper leverages a source dataset Dsrc and a target
dataset D. The approach transfers knowledge from simula-
tion data Dsrc, generated using a nonlinear dynamical bicycle
model, to a target task of learning lateral vehicle dynamics
based on real-world data D. This is achieved through a robust
training formulation, comprising three key steps:

• The first step involves estimating parameters θ from the
bicycle model f(xt, ut, θ), where xt ∈ Rn denotes the
state and ut ∈ Rm denotes the control applied at a time
step t. θ represents a set of fixed parameters that need
to be estimated, but prior beliefs about their distribution
are available. This parameter estimation is performed
using Bayesian inference, leveraging the system mea-
surement dataset D and the prior physical model of the
lateral dynamics f along with its associated parameter
range beliefs P (θ).
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Fig. 1: Description of the proposed method

• The second step involves generating simulation data
Dsrc using f with the set of parameters that maximize
the posterior P (θ|D).

• This dataset Dsrc is then used to pretrain a MLP which
is then fine-tuned on measurement data D using an
autoregressive training formulation.

B. Physical model of the vehicle lateral dynamic

The non-linear dynamical bicycle model f(xt, ut, θ) [20]
depends on a state vector xt composed of the lateral speed
vy and the yaw rate ψ̇. The control vector ut includes the
longitudinal speed vx and the front steering angle δ. The
model behavior depends on a set of parameters θ, which
includes variables such as the vehicle’s mass m expressed in
kg, the center of gravity position defined by the front axle lf
and rear axle lr distances in meters, the moment of inertia
Iz expressed in kg.m2, and the unitless Pacejka coefficients
for the front {Bf , Cf , Df , Ef} and rear {Br, Cr, Dr, Er}
tires [21]. This model, depicted in Figure 2, assumes that
the vehicle is symmetric and operates under steady-state
conditions with no load transfers during maneuvers and at a
constant velocity vx. It also assumes that the car body motion
is static, neglecting pitch and roll dynamics.

v̇y =
1

m

(
Fyf cos(δ) + Fyr −mvxψ̇

)
(1)

Fig. 2: Non-linear dynamical bicyle model

ψ̈ =
1

Iz
(Fyf cos(δ)− Fyr) (2)

Tire forces Fyk
with index k ∈ {f, r} corresponding to

front and rear wheel are provided by the Pacejka tire model
:

Fyk
= Dk sin(Ck tan

−1(Bkαk − Ek(Bkαk − tan−1(Bkαk)))) (3)

The tire model input depends on the tire slip angle αf and
αr. Tire slip angles are computed with the following set of
equations :

αf = δ − tan−1

(
vy + lf ψ̇

vx

)
(4)

αr = − tan−1

(
vy − lrψ̇

vx

)
(5)

C. Parameter identification

The first step of the proposed method involves identify-
ing the parameters θ of the bicycle model using Bayesian
inference. This approach allows to combine prior informa-
tion P (θ) about the parameters with a likelihood function
P (D|θ), which represents the probability of observing the
dataset D given the parameters θ. This combination yields
the posterior distribution P (θ|D), which reflects updated
belief about the parameters after taking the data into account.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(6)

To perform this inference task, a variant of the Ap-
proximate Bayesian Computation (ABC) method known as
ABC-SMC (Sequential Monte Carlo) [22] is employed. This
method is based on an iterative refinement a population of
particles representing system parameter. The initial popula-
tion is sampled from the prior distribution of the parameters
and iteratively filtered based on a distance criterion ρ. At
each iteration p, a new set of particles is obtained by
resampling accepted particles from the previous iteration
using an importance sampling scheme. New particles are
then obtained by randomly perturbing the resampled particles
using a kernel distribution. Following this principle, the
particles progressively converge towards an approximation



of the posterior distribution. The role of the distance ρ is
to iteratively select parameters that are likely to correspond
to parameters from the posterior. For small ϵ, the sets of
parameters generate simulation data Dθ with the model f
that is close to D, approximating the posterior:

P (θ|D) = lim
ϵ→0

P (ρ(D,Dθ) < ϵ |θ) (7)

where ϵ represents the final threshold in a sequence of P
decreasing thresholds, denoted as {ϵ0, ϵ1, . . . , ϵP−1, ϵ}. At
each iteration, these thresholds are applied to guide the
selection of parameter sets. Here, Dθ refers to the set of
predicted trajectories {x̂n0 , x̂n1 , . . . , x̂nT }, while D represents
the corresponding set of measured state variable trajectories
{xn0 , xn1 , . . . , xnT }. The index n denotes different state vari-
able trajectories, each spanning T time steps generated using
the forward Euler integration scheme. The constant ∆t is the
time step size used in the integration :{

x̂nt+1 = x̂nt + f(x̂nt , u
n
t , θ)∆t

x̂n0 = xn0

(8)
(9)

The distance metric ρ is defined as the Root Mean Squared
Error (RMSE) between predictions and observations over T
steps of trajectories, averaged over all N trajectories:

ρ(D,Dθ) =
1

N

√√√√ 1

T

T∑
t=0

(
x̂nt − xnt
σx

)2

(10)

To avoid favoring any particular state variable, the distance
is standardized by σx, the standard deviation computed over
each state variable of D.

D. Transfer Learning

We define the MLP architecture as follows:

ẋt = ϕ(xt, ut, β) (11)

where β represents the parameters of the MLP model. To
generate simulation data for the pre-training phase, fifteen
particles corresponding to the last population P of the ABC-
SMC that minimize ρ are retained. Those particles corre-
sponds to the subset of parameters θMAP that maximizes the
posterior distribution P (θ|D). Using these selected particles
a simulation dataset Dsrc is generated. This is done by
randomly sampling initial state variables xt and control
variables ut from D, and then generating one step ahead
predictions xt+1 using the function f with a randomly
sampled θ from the set θMAP. The dataset Dsrc thus captures
the variability in predictions from f that corresponds to
uncertainty in maximum a posteriori estimate. During both
pre-training and fine-tuning of the MLP architecture, the
optimization is based on the following loss function:

L(β) = 1

T

T∑
t=0

(
x̂t − xt

)2
(12)

In the pre-training phase, as Dsrc does not include dis-
turbances the MLP is optimized for a single time step by

setting T = 1. In the fine-tuning phase, the MLP starts from
the parameterization obtained from the pre-training phase.
During this phase, the training process involves optimizing
the auto-regressive trajectory generation using ϕ based on
the forward Euler integration scheme over multiple time
steps T . This process leverages automatic differentiation over
involved numerical integration operations as described in
[14].

IV. EXPERIMENTAL SETTING

A. Data acquisition

Measurement dataset D were acquired from a Renault
Premium truck using Correvit S-Motion DTI optical sensors
from Kistler to measure longitudinal speed vx and lateral
speed vy . Yaw rate ψ̇ was measured using an Alma inertial
measurement unit. Data were collected at various speeds
ranging from 15 to 80 km/h on a test track by executing
different maneuvers, including slalom, avoidance maneuvers,
and constant radius turns. The total duration of the recorded
data is approximately 20 minutes.

B. Comparison and parameter setting

Comparisons are provided between the transfer-learning
method, the bicycle model, an MLP trained solely on the
training measurements, and an MLP that learned the dis-
crepancy of the bicycle model as presented in [23]. The
dataset D consists of 50% of the available measurements
allocated for training and estimation for each method. The
remaining measurements are divided into 30% for validation
and 20% for testing. Each set was created by randomly
selecting samples. Each method is evaluated using different
combinations of parameters, including MLP complexities
defined by the MLP depth × number of neurons per hidden
layer, specifically {4 × 8, 4 × 16, 4 × 24}. Additionally,
various integration time in secondes for the training loss are
considered {0.05, 0.5, 1}. For all MLP training, the Adam
optimizer is used with a learning rate of 10−3.

C. Evaluation metric

Evaluation of each compared methods involves computa-
tion of the RMSE between measured and predicted state vari-
able trajectories over a ten-second time horizon. Predicted
trajectories are generated autoregressively with a time step
size ∆t = 0.05, corresponding to T = 200 forward Euler
steps. To compute RMSE, predictions of the state variables
start from an initial state x0, which corresponds to the
initially measured state of the test set sequence. Predictions
are then produced using the same control commands ut as
the one in the test set measurements, the RMSE is defined
as:

RMSE =
1

M

√√√√ 1

T

T∑
t=0

(x̂mt − xmt )
2 (13)

M is set to 20 and represents the number of trajectory in the
test set.



D. Prior parameter setting

For bicycle parameter estimation using ABC-SMC meth-
ods, the prior distribution for each parameter in θ is modeled
as an independent Gaussian probability density function.
Table I lists the mean µ and standard deviation σ values
associated with each Gaussian prior distribution, correspond-
ing to each parameter in θ vector. The mass parameter
m = 18781kg has been directly measured using a scale
These parameters are based on domain expert knowledge in
vehicle dynamics and are validated against external sources.
For the Pacejka tire coefficients, the prior means are set as
B ≥ 0, C ≥ 0, D ≥ 0, and E ≤ 0 to avoid unrealistic
tire model behavior, in line with the guidelines from [20].
The prior for the mass parameter m is determined from
direct measurements of the vehicle. For the moment of inertia
parameter Iz , the prior mean is calculated using the prism
method, as described in [24].

V. RESULTS

A. Bicycle model performance

The aim of this section is to evaluate the quality of the
parameter estimate of the lateral dynamic bicycle model
using the ABC-SMC algorithm with different integration
time. Table II presents the performance of the top fifteen
parameter sets θMAP, which maximize the posterior distri-
bution P (θ|D). The performance of these parameters is
evaluated in terms of the average RMSE, computed for each
of the fifteen parameter sets, and for each state variable, vy
and ψ̇. The results demonstrate that longer integration times
used to compute the distance metric lead to a reduction in
RMSE and greater stability, as evidenced by the decrease
in the associated standard deviation. Increasing the number
of integration steps allows for comparing trajectories over
longer time horizons using ρ, resulting in a distance metric
that is less sensitive to noise fluctuations as the signal-
to-noise ratio improves with longer trajectories. However,
increasing the number of steps requires greater computing
power to compute ρ for each tested particle at each iteration
of the ABC-SMC algorithm.

B. Transfer-learning performances

The previous section provides information about the pre-
dictive accuracy and associated variability related to the
estimated parameters of the bicycle model. The final perfor-
mances of both the transfer-learning and discrepancy model-
ing methods are dependent on the quality and variability of
predictions of the bicycle model with assessed with parame-
ters from θMAP. To take into account this dependence in the

Parameter Iz lf lr B C D E

µ 150000 5 5 7.1 3 3 -2
σ 50000 1 1 2 2 2 1

TABLE I: Prior distribution parameters. The mean (µ) and
standard deviation (σ) are provided for each parameter.

Integration Time (s) vy ψ̇

0.05 0.1416± 0.0144 0.0116± 0.0022
0.50 0.1354± 0.0060 0.0101± 0.0011
1.00 0.1185± 0.0051 0.0083± 0.0009

TABLE II: RMSE computed over 10-second trajectories
from the test set for various training integration times. RMSE
values are provided for the lateral speed vy and yaw rate ψ̇
state variables. Uncertainties are given as ± one standard
deviation.

final results, context of the transfer-learning approach, the
performances of the fine-tuned MLP, depends on pre-trained
on data simulated from f with parameters from the set θMAP.
For the discrepancy modeling the experiments are repeated
fiftneen times, each with a different parameterization from of
θMAP the bicycle model contained in this set. Table III shows
the performance in terms of RMSE for each state variable,
considering different integration times and MLP complex-
ities. It compares MLPs with random initialization, MLPs
with transfer learning starting from different parameteriza-
tions β obtained from repeated pretraining processes using
θMAP, and similarly, repetitions of the discrepancy learning
method based on different parameterizations of the bicycle
model. For each compared method, as in the previous section,
increasing integration time is associated with a reduction
in the RMSE and its variability, enhancing the robustness
of the loss function against noise fluctuations. Additionally,
increasing MLP complexity from 8 to 16 and 24 neurons per
hidden layer is associated with improved performance for
each method. The transfer learning method shows a smaller
RMSE and standard deviation over each state variable.
Discrepancy modeling shows higher RMSE compared to the
learning-based method, which is our baseline as it represents
the case where no additional information other than dataset
D is used. A hypothesis for this loss of performance is
an unstable gradient during training due to the dependence
between bicycle model predictions that are fed into the MLP,
which is responsible for learning to correct its predictive
bias. As these steps involve auto-regressive dependence,
backpropagating the gradient through this scheme is likely
to lead to predictions from the MLP that are outside the
classical range of states with physical meaning for the bicycle
model, leading to an unstable gradient. The Figure 3 shows
the evolution of the averaged RMSE over each trajectory
of the test set for each state variable, for increasing lengths
of autoregressive prediction. This is done for the parameter
set for each method that yielded the lowest RMSE for each
state variable in Table III. For the learning-based, transfer
learning, and discrepancy methods, we observe an increase in
error at the beginning of the simulation, followed by a slight
attenuation and stabilization over time of the RMSE on the
yaw rate state variable. This pattern seems to indicate an error
accumulation due to random fluctuations in the measured
trajectory that cannot be learned by any method. Over time,
the properties of these random fluctuations remain constant,
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Fig. 3: Evolution of RMSE for each state variable vy and ψ̇
over 10 secondes trajectories for each compared method

and the predictions of each method are valid up to a constant
prediction bias, implying RMSE stabilization over time. In
the case of the lateral speed state variable, we observe a
similar pattern, but the RMSE tends to be in slightly increase
tendency at the end of the trajectory, indicating error accu-
mulation over time. For the bicycle model, due to its inability
to capture all phenomena present in the measurements, error
accumulate without any perceptible stabilization. Figure 4
presents the trajectory simulated over a temporal horizon
of 10 seconds for each method, focusing on the vy and ψ̇
state variables during a slalom maneuver. The bicycle model
demonstrates degraded predictions for each state variable,
with a significant bias in vy . This degradation as observed in
3 is attributed to the model’s lack of degrees of freedom, as
it always assumes steady-state behavior, failing to account
for lateral mass transfer. In contrast, our transfer learning
method, which leverages knowledge from the bicycle model,
shows improvement during the high-dynamic phases of the
slalom trajectory, particularly in scenarios involving mass
transfer, compared to purely learning-based and discrepancy
modeling methods. The Table IV shows the relative per-
formance gains in percentage with respect to the learning-
based method. The relative gain in performance is computed
as follows for each state variable: (1 − RMSE

RMSEbaseline
) × 100,

where RMSEbaseline corresponds to the smallest obtained
RMSE of the learning-based method in Table III in bold.
The physics-based model shows significant performance loss
with respect to the baseline due to previously exposed
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Fig. 4: Trajectory simulation of 10-second duration for a
slalom path. Transparent areas correspond to ±0.1σ around
the predicted mean

limitations. Although its predictive accuracy is far outside the
range of the learning-based method, the integration of this
imperfect knowledge offers a way to significantly improve
the performance of the transfer-learning method. The gain in
performance for transfer-learning is dependent on the quality
of the predictive performance of the physics-based method.
For the state variable vy , improvement is less significant than
for ψ̇ due to the strong bias of the bicycle model on the lateral
speed. The discrepancy method shows a global decrease
in performance for each state variable with respect to the
baseline, related to the difficulty of making this method stable
in an auto-regressive training context. Implementation of our
method and data are available at https://github.com/N9TT-
9G0A-B7FQ-RANC/IEEE RAL

VI. LIMITATIONS

Although the integration of prior knowledge through
physical models and their associated parameter beliefs in
a transfer-learning context allows for improved predictive
accuracy over a long-term prediction horizon, we did not
assess the sensitivity of this improvement when using more
complex physical models with better predictive capabilities,
which can have impact on final performances. On the other
side, we restricted the scope of our experimentation to MLP
models that are designed to take only the current state
and control as input, assuming a memoryless property of
the underlying process. Recurrent neural network (RNN)

Learning-based Discrepancy Transfer-learning

Integration Time Complexity V y ψ̇ V y ψ̇ V y ψ̇

0.05
8 0.07390 ± 0.00700 0.00825 ± 0.00035 0.07115 ± 0.00667 0.00782 ± 0.00043 0.07821 ± 0.02219 0.01074 ± 0.00678

16 0.20725 ± 0.23938 0.03773 ± 0.06155 0.07510 ± 0.02942 0.01006 ± 0.00853 0.27206 ± 0.34704 0.02854 ± 0.03610
24 0.15261 ± 0.22186 0.02597 ± 0.04075 0.07917 ± 0.03554 0.00976 ± 0.00576 0.10662 ± 0.06833 0.01417 ± 0.01019

0.5
8 0.05778 ± 0.00293 0.00682 ± 0.00028 0.06174 ± 0.00478 0.00667 ± 0.00027 0.05451 ± 0.00235 0.00634 ± 0.00032

16 0.05424 ± 0.00105 0.00626 ± 0.00025 0.05978 ± 0.00400 0.00643 ± 0.00022 0.05265 ± 0.00085 0.00578 ± 0.00019
24 0.05358 ± 0.00165 0.00609 ± 0.00031 0.05504 ± 0.00175 0.00641 ± 0.00036 0.05142 ± 0.00148 0.00589 ± 0.00030

1.0
8 0.05361 ± 0.00127 0.00669 ± 0.00028 0.05378 ± 0.00167 0.00663 ± 0.00013 0.05252 ± 0.00204 0.00637 ± 0.00035

16 0.05109 ± 0.00082 0.00630 ± 0.00020 0.05483 ± 0.00133 0.00657 ± 0.00017 0.05063 ± 0.00084 0.00566 ± 0.00012
24 0.05166 ± 0.00110 0.00618 ± 0.00023 0.05439 ± 0.00238 0.00638 ± 0.00025 0.05004 ± 0.00094 0.00569 ± 0.00016

TABLE III: RMSE computed over 10-second trajectories from the test set, for various training integration times (in seconds)
and different MLP complexities (corresponding to the number of neurons per layer). RMSE are provided for vy and ψ̇ state
variables for each compared method. Uncertainties are provided as ± one standard deviation.

https://github.com/N9TT-9G0A-B7FQ-RANC/IEEE_RAL
https://github.com/N9TT-9G0A-B7FQ-RANC/IEEE_RAL


vy ψ̇

Transfer-learning +2.00 +7.06
Discrepancy -5.26 -4.76
Physic-based -131.19 -36.28

TABLE IV: Relative performance gains in percentage with
respect to the learning-based method

architectures [25] have demonstrated wide range of success
in time series forecasting and could present an additional
layer of performance improvement due to the exploitation
of more powerful inductive biases in conjunction with the
use of prior knowledge through the same transfer-learning
procedure described in this paper. In this context, RNNs, ac-
cording to [26], require a careful memory state initialization
procedure to guarantee stable long-term prediction, which is
outside the scope of the issues addressed in this paper, but
offers future research opportunities.

VII. CONCLUSION AND FUTURE WORK

Accurate long-term simulation of dynamical systems is
critical for studying, optimizing, controlling, and monitoring
of process. In this work, we developed a robust methodology
to address this challenge by leveraging both system mea-
surements and prior knowledge about the system’s physical
behavior. Our method is based on transfer learning from a
pretrained MLP on simulation data generated by a known
physical model to a source dataset corresponding to real-
world measurements of state variable evolution. The phys-
ical model includes a set of parameters estimated using
Bayesian inference techniques that leverage additional prior
knowledge about parameter distributions. The fine-tuning
process involves an autoregressive function that improves
the prediction accuracy of the final model by optimizing the
MLP over many numerical integration steps, enhancing the
robustness of the training against noise and disturbances in
the measurements. Our experimental results on real-world
measurements related to lateral vehicle dynamics demon-
strate that our proposed method significantly outperforms
purely data-driven models and traditional discrepancy mod-
eling frameworks.
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